OFF-state TDDB in High-Voltage GaN MIS-HEMTs

Shireen Warnock and Jesús A. del Alamo

Microsystems Technology Laboratories (MTL) Massachusetts Institute of Technology (MIT)

Purpose

- Further understanding of time-dependent dielectric breakdown (TDDB) in GaN MIS-HEMTs
- Explore TDDB under high-voltage OFF-state conditions: most common state in the operation of a power switching transistor

Outline

- Motivation & Challenges
- Initial Results & Breakdown Statistics
- Ultraviolet Light During Recovery & Stress
- Conclusions

Motivation

GaN Field-Effect Transistors (FETs) promising for high-voltage power applications \rightarrow more efficient & smaller footprint

Consumer Electronics

Inverse piezoelectric effect J. A. del Alamo, MR 2009

Time-Dependent Dielectric Breakdown

- High gate bias → defect generation → catastrophic oxide breakdown
- Often dictates lifetime of chip

TDDB in GaN MIS-HEMTs

- Classic TDDB observed
- But: studies to date all on positive gate stress TDDB
 → More relevant for D-mode devices: TDDB under OFF-state

OFF-state Stress

- Negative gate bias turns FET off; high bias on drain
- Relevant operational condition for GaN power circuits

OFF-state Stress

- Negative gate bias turns FET off; high bias on drain
- Relevant operational condition for GaN power circuits
- Electrostatics more complicated than under positive gate stress

- TDDB failure can result from peak in electric field during OFF-state
- Study devices with no field plates for simplicity

Dielectric Reliability in GaN FETs

AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs)

Goals of this work:

- What does TDDB look like in the OFF-state stress condition?
- How do transient instabilities (current collapse, V_T shift) affect our ability to observe TDDB?

Initial Results & Breakdown Statistics

GaN MIS-HEMTs for TDDB Study

- GaN MIS-HEMTs from industry collaboration: depletion-mode
- Gate stack has multiple layers & interfaces
 - → Uncertain electric field distribution
 - \rightarrow Many trapping sites
- Complex dynamics involved

 → Unstable and fast changing V_T
 → Current collapse

 $I_{G}=I_{D} \rightarrow$ damage at drain-side edge of gate

Pause stress every 50 s and characterize device

- Multiple jumps in stress I_G before final breakdown
 - Corresponds to increase in I-V OFF-state leakage
- Significant current collapse

OFF-state Step-Stress

Step $V_{DS,stress}$: $\Delta V_{DS,stress}$ =5 V, each 100 s/step

- Moderate stress: I_G=I_D decreases during stress step → trapping
- High stress: I_G increases \rightarrow stress-induced leakage current (SILC)

OFF-state Step-Stress

Transfer characteristics in between stress steps

• Very large V_T shifts (first positive, then negative) and hysteresis

• Progressive increase in current collapse for increasing V_{DS,stress}

OFF-state TDDB Statistics

Time to final breakdown (I_G=1 mA)

- Statistics do not follow Weibull distribution
- Spread over many orders of magnitude

Trapping at Drain-end of Channel

In OFF-state, large electric field peak at drain-end of channel

 \rightarrow Severe electron trapping

- Trapping affects electric field
- Depends on trap concentration, location, etc.
 → highly random

Ultraviolet Light During Recovery & Stress

UV Light to Mitigate Trapping

Need to separate current collapse, V_T shift from permanent degradation

- UV light very effective for de-trapping in GaN
- Choose 3.5 eV for TDDB study

OFF-state Step-Stress: Recovery with UV

- Step $V_{DS,stress}$: $\Delta V_{DS,stress}$ =5 V, each 100 s
- Before characterization, shine 3.5 eV UV light for 5 minutes after each stress step

• No UV during stress \rightarrow expect unchanged stress leakage current

OFF-state Step-Stress: Recovery with UV

Transfer characteristics in between stress steps

- Current collapse mitigated
- No positive V_T shift, only negative \rightarrow NBTI

OFF-state Step-Stress: Stress with UV

- Step $V_{DS,stress}$: $\Delta V_{DS,stress}$ =5 V, each step 100 s/step
- 3.5 eV UV light during stress, and 5 minutes after (to eliminate residual trapping)

OFF-state Step-Stress: Stress with UV

• Step $V_{DS,stress}$: $\Delta V_{DS,stress}$ =5 V, 100 s/step

- No evidence of trapping for moderate V_{DS,stress}
- Clear appearance of SILC at higher voltage
- Breakdown at 60 V compared to ~110 V for step-stress in dark

OFF-state Step-Stress: Stress with UV

Transfer characteristics in between stress steps

- Current collapse entirely mitigated
- Negative V_T shift \rightarrow NBTI

OFF-state Constant-Voltage TDDB Statistics

Compare TDDB in the dark and with 3.5 eV UV during stress

- UV statistics now follow Weibull distribution
- Breakdown occurs sooner, even with V_{DS,stress} ~25% less
- UV mitigates trapping ightarrow electric field \uparrow

Conclusions

- Investigated OFF-state TDDB in GaN MIS-HEMTs for the first time
- Without UV light:
 - Current collapse, V_T shift
 - Cannot separate transient and permanent effects
 - Non-Weibull breakdown statistics
- With UV light:
 - Current collapse completed mitigated
 - Progressive negative V_T shift \rightarrow NBTI
 - UV de-trapping yields higher electric field → accelerated breakdown
 - Breakdown follows Weibull distribution
- Next work: estimate electric field to develop lifetime model

Acknowledgements

Dr. José Jiménez, IRPS 2017 mentor

Questions?